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SU(3) revisited

Mark Byrdf and E C GSudarshan
Center for Particle Physics, University of Texas at Austin, Austin, TX 78712-1081, USA

Received 1 July 1998

Abstract. The ‘D’ matrices for all states of the two fundamental representations and octet
are given in the Euler angle parametrizationSaf (3). The raising and lowering operators are
given in terms of linear combinations of the left-invariant vector fields of the group manifold in
this parametrization. Using these differential operators the highest weight state of an arbitrary
irreducible representation is found and a description of the calculation of Clebsch—-Gordon
coefficients is given.

1. Introduction

In our understanding of particle physics, studying the gr&U3) has helped tremendously.

It has given us an organization to the plethora of ‘elementary’ particles through the Eightfold
way [1] and then led to the quark description of hadfonsThis, in turn, led to the
fundamental theory of the strong nuclear interactions known as the c®lo(8) of the now

widely accepted standard modlelt has also had numerous successes in phenomenological
models such as the nucle8t/ (3) model of Elliot [4], and the Skyrme—Witten model [5].

Its algebra has been utilized extensively for these applications but its manifold has not. In
most cases, due to the intimate relationship between the algebra of a Lie group and the
group itself (subalgebras correspond to subgroups, etc), this description has been enough.
Also, since the group manifold o§U (3) is eight dimensional, it is not prone to ‘visual’
analysis. Recently, however, the manifold has been used for the study of quantum three-
level systems and geometric phases [6-9]. The subgroups and coset spaéa8)hre

listed in [8] along with a discussion of the geometry of the group manifold which is relevant
to the understanding of the geometric phase. It should therefore be no surprise if the group
and group manifold lead to further understanding of physical phenomena beyond what the
algebra has already accomplished. Further study of its structure may very well lead to an
even greater understanding of nature and the way its symmetries are manifest.

Here, the raising and lowering operators of the group are given in terms of differential
operators. The states of the fundamental representations are given in terms of the Euler angle
parametrization. A highest weight state is given for all irreps (irreducible representations)
that will enable the calculation of any state within any irrep. A determination of the ranges
of the angles in the Euler angle parametrization is made. Finally, the states within the
octet are given and a description of the direct calculation of the Wigner Clebsch—Gordon
coefficients is given that uses the invariant volume element.

1 E-mail address: mbyrd@physics.utexas.edu

1 E-mail address: sudarshan@physics.utexas.edu

§ A bibliography on the developement of the quark model is given in [2].
I An excellent review of this material is contained in [3].

0305-4470/98/469255+14$19.5@C) 1998 IOP Publishing Ltd 9255



9256 M Byrd and E C GSudarshan
2. The ladder operations

The so-called ladder, or raising and lowering operators, take one state to another within an
irrep. Their representation may be in terms of matrices or differential operators. The
differential operators have been constructed here from linear combinations of the left-
invariant vector fields in [9]. This enables one to analyse the states within a group
representation. Most of this analysis has been performed using only the properties of
the commutation relations which the differential operators can be shown to satisfy. These
analyses will not be repeated here since they are well explained in various texts (see, for
example, [10, 11]). What is important here is that the differential operators given can
be shown to satisfy the commutation relations on fhenatrices of the next section and
therefore represent the Lie algebra as claimed.

First the left differential operators, that is, those that are constructed from the left-
invariant vector fields of [9] are given. These change the labels on the left of the brackets
used to represent the elements of thematrices which indicates the change from one
state within an irrep to another. The explicit forms of these are given appendix A. These
operations are given explicitly by example below. One may take note that the right ‘raising’
operations are given by the subtraction of two elements of the correspondinghis is
due to the commutation relations that are obeyed by the right operators. They satisfy (see,
for instance, [12])

[A], Af] = —2ieij Ay
whereas the left operators satisfy
[Ai, A]] = 2i€ijkAk'

3. The fundamental representations

Here the states of the fundamental representations are exhibited explicity and one may
check through a straightforward calculation that they are related through the raising and
lowering operations defined above. First Bieepresentation.

D(a,B,y,60,a,b,c, ) — @(—ihaw) firap) g(—iray) girs0) o(—iraa) ((irob) o(=irac) o —ired) (1)

This matrix actually corresponds to the complex conjugate of the matrixi [9] as is
common. The particular signs of the exponents correspond to a choice of phase that is a
generalization of the Condon and Shortley phase convention (see [13]). This makes the root
operators positive or zero. Matrix elements can be labelled by their eigenvalues as below,
where the following definition is used

(13,3 |13, ) = DLy,

. (33133 (33133 (33l0.-%

oy = | (=3:313:3) (-3.31-3.3) (-3.30.-%) &y
(0.-3[3.3) (0.-3|-3.3) (0.-5/0.-3)

These matrix elements correspond to the functions:

1) = e e (717 e cosp cosb cosy — €7 € sinB sinb)
, 1) =e“dee (e e ' cosp sinb cosd + €7 € sinB cosb)

0, —2) = e "e717e?" cosp sing

—_—
[EN
[N
[N

—
NI= NI NI
Wik Wik Wl

N
NI wl

—



SU(3) revisited 9257

(1,213, 1) = —e“e“e"(e" Ve 1 sinp cosh cosd + €7 € cosp sinb)
(-1, 5|1 1) = —dedee-n(e-e sinp sinb cosh — e cosp cosb)
(3,210, —3) = —€"e7e?" sinB sing
(0,—2| 1, %)= —e e " sing cosb
(0,—3|—3. 1) = —e“ée " sinbsing

2 2 i
(0. -510, —5) = & coss.

This is actually formed fromD* and the3* representation is formed by the following
replacements:{kl — A1, A2 = —Ao, A3 = —A3, Ag = A4, A5 > —As, Ag — Ag,
A7 — —A7, Ag — —Ag} for the corresponding matrices in ti3erepresentation. The two
fundamental representations are inequivalent so there exists no inner automorphism between
them. This is the outer automorphism that preserves the ladder operations and the previous
phase convention. Th& representation is then found to be as follows:

D(a, B.y.6,a,b,c,d) — gi430) g(—i%2p) (iray) o(—i456) (ir3a) o(—ir2b) (irac) fired) ()

Its matrix elements can be labelled by their eigenvalues as follows:

on (—1%’—1%|—l% —1'> (—% —%I%,—%) (—l% -3/0.3)
woy = | 2—3l-2-30 (B-3lz-3) & 3|0 3 )
03-3-3 LIl 0303
(-3, -3 -3 —1%)=€&v€en(e7€" cosp cosb cost — eV e sinB sinb)
(-3, -%]3 —3%) = —€2e“e"(e7€" cosp sinb cosh + e~V e~ sin B cosh)
(-1,-%1]0, %) = —€“re 2" cosB sing
(3. —1| -3, 1) = e@d€"(€7 € sinp cosb cosd + e~V €7 cosp sinb)
(3.—%]3 —3) = —e@e“d"(e7€" sinB sinb cosh — e~ e~ cosp cosb)
(3.-%]0, %) = —e“”e 2 sinB sing
(0, 2] -3, —3%) = é*€“€" sind cosb
(0,2]1, —1) = —dee " sing sinb
(0,20, 3) = e cosp.

Note that theD matrices are labelled properly in the following form (théabel was not
necessary in the fundamental representations nor would it be on any triangular representation,
D([’,O) or D(an)):

(p.q)
(t,13,y31',13,5) "

4. General irreducible representations

In the Euler angle coordinates, the states within an irrep may be obtained in two ways. One
is to exponentiate the algebra and multiply the matrices in the decompostion given in [9],
or (1). Another way is to find the maximum weight state of the irrep and use the raising

and lowering operations to derive the other states within that irrep. This maximum weight

state can be found as follows.
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For each irrep there exists a unigue maximum weight siap?, that can be defined
by the following equations:

VD =0 ViDP9 =0
U.DP? =0 U.D? =0
T,D{"" =0 T/ DP9 = 0.

When one solves these equations and satisfies the conditions for the first two or three reps,
one finds that in this parametrization

p
(P.9) — @ 1(2q+p)na—ipag—ipc g+l (P
Do =g e 'rog ;( 1) (n)
x (677 &7 cosp cosh cosd)" (67 € sin B sinb)” " cod 6. (5)

Note 1. This is not the maximum state defined in [10, 11].

The maximum state could also be labelled wih andy,,, which denote the value of
t3 and y for this maximum state. In terms of andg these are

5. The octet

The octet is the smallest nontrivial example within which there exists two different states
with the sames andy. These will have different total isospin since they belong to different
isospin representations. Thus it may be used as an example of how to find the Clebsch—
Gordon coefficients using the explidi matrices.

The octet is an irrep with eight states (hence the name). It can be obtained from the
product of D9 and D@D from which a scalalD©@? is removed. Thus it is denoted by
DIV For it, the maximum weight state is given by the equation in the last section by
substitution of the explicip andg,

DD = grlvgieg=3 cogh) eV €7 cogB) cogb) cogh) — € € sin(B) sin(b)].
For calculational purposes it is more convenient to notice that this may be written as

DY = (313 J0.310.3)

From this state, operation By_ will give one of the two different centre states, each having
(13, y) given by (0, 0). The first is given by

VoDt = (=353 3)3. —310.5)

and the second by

T-U-DY =(=3.3]3.3)3 =310, 8)+ (3. 3] 3. 5)-3. —310.5)

The other states are as follows, listed counterclockwise around the hexagon starting from
the one after the maximum weight state.

U-Dpt =(3 313 303 -310.3)
VoUu-Dp =(0,-53.3)3.-310.3)
TVU-DY =(0,-%]33)(-3 —1]0.3)
UsT-VU-DEY =(-3,3]3 3)(-3.-30.3)
VUL T-V_U-DEY = (3,313 3)(0. 5 0. §)
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The two of concern here are the two centre states. From these, the linear combinations
that give states that are membersSaf (2) isospin states will be used. This is easy to do.
Simply take the arbitrary linear combination of the two and demandZthand 7 on this

state give zero. This linear combination is then a member of an isospin singlet. The other
linear combination gives the centre state in an isospin triplet. These linear combinations
are found to be

DGon200 = (-7 33 33 —310.3)
which is the member of the isospin triplet, and
Digonooo = (3 313 3z —310.5) - (3. 313 3-3. —3[0.3) (6)
which is an isospin singlet. Thus the Clebsch—Gordon coefficients have been determined.
This can be used as a general method for calculating them. One can simply demand that the
states form complete horizontal isospin irreps in#he plane. These are ndtU (3) WCG
(Wigner—Clebsch—Gordon) coefficients, but rather the coefficients of the linear combinations

of SU(2) irreps within SU(3). The method of calculating th&U (3) WCG coefficients is
now straightforward and will be discussed next.

6. WCG coefficients for SU (3)

The WCG coefficients may now be calculated with the orthogonality relations between
different states using the following group-invariant volume element. This may be found by
using the (wedge) product of the left- (or right-) invariant 1-forms calculated in [9]. The
result is the following:

dV = sin 28 sin 2 sin X sir? 6 do dB dy do da db dc d¢p
where the ranges of integration are

O<La,y,a,c<m

0<B.b,0<in and 0< ¢ < /3.

These are not trivial to determine [14] since their determination is equivalent to determining
the invariant volume of the group. With th® matrices given for the fundamental
representations, one may infer these minimum values for the ranges of the angles by
enforcing the orthogonality relations that these representation functions must satisfy. These
orthogonality relations are given by

(p1.q1)* (P2,92)
/ Dtl- (13)1,y1:11, (13) 1,71 th,(t3)2,y2;l§,(l§)2,}'é dv

Vo
= zSplv[’25‘11~‘128[1v128(13)1q(f3)28)'1qy28[1qté8([é)la(té)za."iu"é (1)

whereVj is the invariant volume of the group aadis the dimension of the representation,

d = %(p + (g + D(p + g + 2). Thus knowing that the integral of the product of an
element of aD matrix with its complex conjugate is a constant that depends only on the
dimensionality of the representation, and that the integral of its product with anything else
is zero, provides equations that may be solved to find the ranges of the angles. The result
for Vo (= +/37°/4) agrees with what Marinov found/§ = 3v/37°/4) to within a factor of

3 [14]. This may be explained by considering the structure of the group manifold. In [12]
the group-invariant volume element f6/(2) is derived. The normalization factar? can
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be viewed as arising from the anglesandg in the ordinary Euler angle parametrization
of SU(2);

U = d*/adBl2dv s

The factor of 2 comes from the covering of the northern and southern poles, or hemispheres.
In the case ofSU(3), one may consider the possibility of three ‘poles’. Thus we may
consider the ranges

0<¢/V3<m 27 < ¢/V/3 <31 and 4 < ¢/3 <51

for ¢ to cover the three poles.

The orthogonality relation for th&U (3) representation matrices, with the constants
determined, gives us a vital tool for the determination of the WCG coefficienfd/@B).
One may simply take a direct product of any representations and use the orthogonality
relation to determine which, and how many, representations are contained in that direct
product. The linear combinations of the states in a given representation can then be
determined (with the coefficients being WCG coefficients) either by direct ladder operations
that were given earlier, or by ensuring othogonality with the appropriate integration. The
important result is the orthogonality relation with appropriate constants. This eliminates the
problem faced by de Swart by solving hig’ ‘problem [15]; that is, one may now find the
number of irreducible representations in any given representation by using the orthogonality
conditions.

7. SU(3) and SO(8)

The generic element of the adjoint representation, since it is real and unitary, is orthogonal.
Since it also has determinant 1, it is an elements6f(8). It is, however, a function of
only eight angles. If we call this matrik;;, then it will satisfy the equation

UnU' = Rijh,

ijs

and
Ap = RijA;.

Therefore we have a mapping from the left-invariant vector fields to the right-invariant
vector fields given in [9] and therefore between the left and right differential operators.
This relates the so-called body-fixed and space-fixed reference frames (see, for example,
[12]).

This mapping is exhibited explicitly in appendix B.

8. Summary/conclusions

It has been shown that the operators from [9] provide a means for finding the irreps of
SU (3) by the construction of the ladder operators. The two fundamental reps and the octet
rep have been exhibited explicitly. The highest weight state for any irrep was found, thus
enabling the calculation of any state within any irrep. A determination of the ranges of the
angles in the Euler angle parametrization was made and the calculation of WCG coefficients
was discussed. Therefore a more complete description of the gibp), its manifold
and its explicitly parametrized irreps has been given than has been done in the past.

The Clebsch—Gordon coefficients (or WCG coefficients) were calculated by de Swart in
[15] using only algebraic properties. The operators given here could mimic those results as
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well. The Euler angle parametrization was given by Beg and Ruegg along with a calculation
of the differential operators that are valid for some particular cases and no attempt was made
to find the corresponding right-invariant vector fields [16]. Holland [17] and Nelson [18]
originally gave an account of the irreps 8¢ (3), but the rep matrices were presented in a
somewhat less manageable form. These were also investigated by Akyeampong and Rashid
[19]. It is anticipated that this more manageable account will lead to new applications.

It has already proven to be useful in the description of three-state systems. This will be
discussed elsewhere.
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Appendix A. Explicit forms of the invariant vector fields

Below are the explicit forms of the raising, lowering and eigenvalue operators in the Euler
angle parametrization. One may consult [10] or [11] for a review of the commutation
relations and the results of these actions on states inzHyeplane.

In what follows

alEi 825i 835i 845i
oo aB ay 00
852i 862i 875i agEi
da ob dc ¢
T, = }(Al +iAp) = Ee*Zi“ <i cot28 9, — 9y — | 33> (A1)
2 2 sin 28
T = 1-(Al—iAz) = }ezi"’<icot2,3 01+ 02 — — ! 83) (A2)
2 2 sin 28

1 .
Vi= E(A4 +1A5)

1 ity SINB
2 sin 28
g 2= sif0)
2 sin?
| i(g—y—2q)COt 2D

f— _87 -
2 sing

1 . . i .
cotd d; + Ee"(‘"*”) sinB cotd 9, — Ee"(‘"*” cot 28 sinB cotb 93

2cosp 3
sin® °
. 1 . ,.sing [P sing
sin 8 _ Zg i(a—y—2a) ! a —_e i(a—y—2a) : :
pds 2 sing 6Jr2 sinfsin2 '

1 i
0SB 33 — Ee*'("“’) CcOSp ds — Ee*'(‘””)

3
- Ze"(‘“” tand cosp Yg (A3)
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1 .
Vo= =(Ag — 1A
2(4 IAs)

i sin ; . i .
zé(‘””) sm2€3 coto 9, e'(‘“y) sinp cotd 9, — Eé(‘”’” cot 28 sinp cotd 93
i (2 — sirf o) 1. i 2cosﬂ
@t 2T cosB s+ €@t cosp o, — ~€“H
2 sin2y p ds + 2 P da— 2 sin 29
i cot (5. SinB i sing
— _e'(a Y- 2“) Sl a el(a y—2a) - a é(a y—2a) -
2 sind Fds+3 sing ° *3 2 sindsin2 '
3.
— Ze'(‘”*” tand cosp Yg (A4)

1 .
Uy = E(A6 +iA7)

_ 1 ey COSB

1. i
= _ cotd 9 —e""“y) cosp cotd 9, — —é("‘” cot 28 cosp cotd &
5 sin2p 1+ 14 7 28 cosp 3

i (2 —sirf o) . 2 smﬁ
Leen 2= D ging g e'(“ Y'sing 8 é(“ N~
2 sin2 np 3+ 3 Foats sin 29
i cot2 cosp cosp
€@t Z—— cogp e'(‘“”z”) o + Leeryam 0P
2 sing P ds = sing + 2 sin@sin2 '
3 .
+ Ze'(""’) tané sing Ys (A5)
1 .
U- = E(Aes —iA7)
i o-ia—y) COSB. cosp T,
= cotf 9, — =€ ¥’ cosp coth o
€ Sin28 1= 5 8 2
i i (2 — sirt o)
— —e @) cot 28 cosp coth 3 el M2 > ging
> 28 cosp 3 — Sn® sing 93
1 . .
- Ee"“"‘” sinB ds
i 2sing i cot2p
_e—l(ﬂl—}/) a —l(ﬂt+}/+2ﬂ) CcoS, a
+ 2 sin2® 2 sing p 95
1 o-ita+y20) cosf Y cosf
0 + se i@ty S0P
t3 sing + 2 singsin2
3 _ .
+ Ze*""‘*?’) tand sing Yg (AB)
i
T3 = > 01 (AT)
. . o1
Y=103—105+1—=0g (A8)

/3
where | have omitted a ‘left’ designation. The right differential operators have a superscript
r. These are given by the following equations:

1 _ 1,.( .
7" = E(Ag +iA) = 5e2'0<—|cot2ba7 — 3+ 35> (A9)

i
sin2b

1 . 1 ../ .
Ty =51 —1Ay) = Ee‘z" <—| cot2b 37 + g + 85) (A10)

i
sin2b
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1 r 1 r
> (A +1Ag)

_lei(c+a+3n) sinb
2 sin 2b

2 cosb

sin

eI(c a—2y+3n) 2297 cot 2'3

- _ 2 —sirto
+ Ee’“*“””) cot 2» sinb cotd 95 — e'““”'”%

cotd 37 + = é“*"*gn) sinb cotd dg

0sb 05

9263

e'(”“””) tano cosb Y

(A11)

sinb 03

(A12)

cosb o3

1
Zetat3n cosp g e'(”+“+3”> sinb d
2 “t3 sin® ) 3
_ Lbema—2pvan SING o T jema—2ysay_ SIND
2 sing 2 sing sin 2,3
1 r H r
—(A4 —1Ag)
i sinb 1 . .
—2e ietatay SINY. s coth 97 — e g1 (¢+a+3D sinp cotd 9
| itctatan i gicta+3 (2 - Sirf 6)
+ —€ ") cot 2b sinb cotd 95 — N~ cosb 05
2 sin2
1. i 2cosh i cot28
+ _efl(c+a+3n) cosb 94 + _efl(c+a+3n) : 7|(c a—2y+3n)
2 4T sin2v 2 sing
1 sinb i sinb
e—l(c a=2y+3n) 2" "7 9 — _e—l(c—a—Z)/+3n) i :
+ 2 sing 2 2 sind sin 28 !
3 .
+ Ze*'“*”?’”) tand cosb Y§
r ., ..
—(A6 +1A%)
i cosb 1 ..
2e ite—a~3y) €OV ) cotd 9; — 2e*'(‘*“*3") cosb cotd dg
I 7|(c a—3n) I(c a—3 )(2 Sln29) .
cot 2b cosb coto a N~ sinbd
—3° > sin2 °
1 i(c—a—3n) Zsmb i i _3,COt 28
c—a— sinb 3 e i(c—a—=3n) =277 — _g@ i(c+a+2y—3n) :
—3° at 3 snzw 272 )
+ 1e—l(t+a+2y =3 2727 cosb 3+ = . I(L+a+2y 3n) COS_’b 1
sing 2 siné sin 28

3 .
+ Ze*"““*") tand sinb Yy
1 r 1 r
E(Ae —1A%)

2

i
- Ee'(““*&” cot 2 cosh cotd 9s — >

i cosb 1.
_glc—a=3n) <, €Ot 97+ §é<‘—"—3"> cosh cotd dg

e sif9)

sin

sinb o
29 5

(A13)
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1. _ i 2sinb i cot 28
_el(c—u—3n) sind § _el(L—u—3i1) O0a — _e'(‘+“+2y_3n)— cosb o
+3 4135 sinp @7 2 siné °
1. cosb i cosh 3
_ Zeletav2y=3n 2727 5 " dletat2y=3n 727 5 4 Zdc=a=31 tang sinp YL
2 sing 2132 sinosin2g T2 °
(A14)
i
= Lo (A15)
1
Y '=—ia AL6
it (A16)

wheren = ¢/+/3.
Appendix B. The adjoint representation

R11 = €0S 2¢ c0S B cosh[coS(2a + 2y) cos D cos 2 — Sin(2a + 2y) sin ]
— Sin 2x cosh[sin(2a + 2y) cos D cos 2 + coq2a + 2y) sin ]
—cos 2 sin28(1 — 3 sif0) sin 2> cos 2

R12 = sin 2u cos 8 cosh[cos(2a + 2y) cos D cos Z — sin(2a + 2y) sin ]
+ c0s 2v cosA[sin(2a + 2y) cos D cos Z + cog2a + 2y) sin ]
—sin2¢sin28(1 — 3 sir6) sin 2 sin

R13 = sin 28 co92a + 2y) cos & cos 2 cosh — sin 28 sin(2a + 2y) sin 2c cosH
+cos B(1— 3sifd)sin2cos 2

Ris = —% cojw + y)cospsin ¥ sin2h cosz — coJa — y — 2a) SinB cos & cos 2 sind
+sin(e + y + 2a) sing sin 2c sind

Ris = %sin(oz + y) cosBsin P sin2b cos 2 + sin(e — y — 2a) sing cos & cos 2 sinb
+coSo + y + 2a) sing sin Z sind

Rig = %cos(oz —y)singsin?sin2bcos 2 — coga — y — 2a) cosB cos D cos 2 sind
+ sin(e + y + 2a) cosp sin Z sind

Ri7= %Sin(oz —y)sinBsin® sin2b cos2 — sin(e — y — 2a) cosB cos & cos Z sind
—coqo + y + 2a) cosg sin 2 sing

3 . .
Rig = —g sir’ 6 sin 2h cos 2

R21 = €c0s 2v cos 28 cosh[sin(2a + 2y) cos Z + cog2a + 2y) cos D sin ]
— sin 2x cosf[sin(2a + 2y) cos & sin 2 — coq2a + 2y) coS Z]
—cos 2 sin28(1 — 3 sirf @) sin 2 sin

Ryy = —sin2u cos 28 cosd[sin(2a + 2y) cos 2 + coq2a + 2y) cos D sin ]
— €0S 2 cosd[sin(2a + 2y) cos D sin 2 — coq2a + 2y) cos 2]
+sin 2 sin 28(1 — $ sir? 6) sin 2 sin
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R23 = sin 28 cosf[cos(2a + 2y) cos D Sin 2 + sin(2a + 2y) cos 2]
+cos B(1— 5sirf o) sinbsin2

Ros = —% coqa + y) cospsin Y sin2 sin + sin(e — y — 2a) sinB sind cos 2
—coqa — y — 2a)singsind cos b sin

Ros = %sin(a + y) cosp sin Y sin2b sin 2c 4+ cojo — y — 2a) Sing siné cos 2
+sin(ae — y — 2a) sinB sind cos @ sin

Rog = % cojw — y) sing sin ¥ sin 2b sin 2 — sin(e + y + 2a) cosp sinf cos &
—coYa + y + 2a) cosp sind cos D sin

Ro7 = 1sin(e — y)singsin@ sin2»sin + cosa + y + 2a) cosp sinf cos 2
—sin(e + y + 2a) cosB siné cos b sin

Rpg = —3+/3sirfosinsin

R31 = — €0S 2¥ c0s 28 cos sin 2» coY2a + 2y) + Sin 2x cosh sin 2» sin(2a + 2y)
—cos 2 sin28(1 — 3 sif0) cos @

R32 = sin 2u cos 28 cosh sin 2b cog2a + 2y) + cos 2x cosh sin 2b sin(2a + 2y)
+sin 2 sin 28(1 — $ sif0) cos D

Rsz = —sin 28 cosf sin 2» cos2a + 2y) + cos B(1 — 3 sir*0) cos D

R34 = —% coqa + y) cospsind cosd + coJa — y — 2a) SinBsind sin 2
R3s = %sin(a + y)cospsind cosd — sin(e — y — 2a) sing sind sin
R3s = % coSu — y)singsin ¥ cos @ + coj« + y + 2a) cosp sinb sin 2»
Rs7 = 1sin(e — y)sinBsin2 cos D + sin(a + y + 2a) cosp sind sin 2
Rsg = —3+/3sirfo cos

R41 = —cos 2y cos B sind sinbcoSa —c — 2y — 3n)
—cos 2 sin 28 sin X coSa + ¢ + 3n) cosb
+ sin 2x sind sinb sin(a — ¢ — 2y — 3n)

R4p = sin 2 cos B sinf sinb coSa — ¢ — 2y — 3n)
+ sin 2x sin 28 sin 29 coSa + ¢ + 3n) cosb
—cosa sing sinbsina — ¢ — 2y — 3n)

R43 = sin 28 siné sinb cosa — ¢ — 2y — 3n) + cos B sin P coa + ¢ + 3n) cosh

R4 = coqa + y) cosp cos P coSa + ¢ + 3n) cosb
—sin(a + y) cosB sin(a + ¢ + 3n) cosb
—singsingsinbcosa+y —a —c— 3n)
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Ru4s = — sin(a + y) cosp cos D coda + ¢ + 3n) cosb
—coqa + y) cosp sin(a + ¢ + 3n) cosb
—singsing sinbsin(a +y —a —c — 3n)

R4 = — coqa — y) sing cos D coSa + ¢ + 3n) cosb
—sin(e — y) sing sin(a + ¢ + 3n) cosh
—cospcosydsinbcoSa+y +ao —c—3n)

R47 = —sin(e — y) sinB cos @ coa + ¢ + 3n) cosb
+ coqw — y) sing sin(a + ¢ + 3n) cosb
—cosgcosd sinbsin(a+y +a —c — 3n)

Rag = /3sin D coga + ¢ + 3n) cosh

Rs1 = cos 2x cos B sind sinbsin(a — ¢ — 2y — 3n)
— cos 2 sin 28 sin X sin(a + ¢ + 3n) cosb
— sin 2x sind sinb coa — ¢ — 2y — 3n)

Rsp; = —sin 2w cos B sind sinb sin(a — ¢ — 2y — 3n)
+ sin 2x sin 28 sin 29 sin(a + ¢ + 3n) cosb
—cos 2 sin@ sinbcoda — ¢ — 2y — 3n)

Rs3 = sin 28 sind sinb sin(a — ¢ — 2y — 3n) + cos 28 sin 2 cosb sin(a + ¢ + 3n)

Rs4 = coqa + y) cosp cos D sin(a + ¢ + 3n) cosb
+ sin(a + y) cosp coSa + ¢ + 3n) cosb
+singcosd sinbsin(a+y —a —c — 3n)

Rs5 = —sin(a + y) cosp cos B sin(a + ¢ + 3n) cosb
+ coq« + y) cosB coSa + ¢ + 3n) cosb
—singcosdsinbcosa+y —a —c—3n)

Rsg = — coqa — y) sinB cos @ sin(a + ¢ + 3n) cosb
+ sin(a — y) sinB coa + ¢ + 3n) cosb
+ cospg cosh sinbsina +y +« — ¢ — 3n)

Rs7 = —sin(a — y) sinB cos @ sin(a + ¢ + 3n) cosb
—coqa — y)sing coda + ¢ + 3n) cosb
—cospcosysinbcoa+y +ao —c—3n)

Rsg = ~/3sin 2 sin(a + ¢ + 3n) cosh

Rg1 = €c0OS 2¢ cos 2B sind cosb coSa + ¢ — 2y — 3n)
—cos v sin28sin X coSa — ¢ + 3n) sinb
+ sin 2x sin6 cosb sin(a + ¢ — 2y — 3n)
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Rg> = — sin 2x cos B sind cosb sin(a + ¢ — 2y — 3n)
+ sin 2x sin 28 sin 2 coga — ¢ + 3n) sinb
+ cos 2 sind cosb sin(a + ¢ — 2y — 3n)

Re3 = —sin28 sin6 coshcoda + ¢ — 2y — 3n) — cos Bsin Y sinbcoda — ¢ + 3n)

Rg4 = cOqa + y) cosp cos D coga — ¢ + 3n) sinb
—sin(a + y) cosp sin(a — ¢ + 3n) sinb
+singcosdcoshcoda+c+y —a—3n)

Rgs = — sin(a + y) cosp cos D coja — ¢ + 3n) sinb
—coYa + y) cosp sin(a — ¢ + 3n) sinb
+sing cosd cosbsina +c+y —a — 3n)

Res = —cojw — y) sing cos @ coga — ¢ + 3n) Sinb
—sin(e — y) sinB sin(a — ¢ + 3n) sinb
+ cosp cosd coshcoSa +c+y +a — 3n)

Rg7 = —sin(a — y) sing cos & coda — ¢ + 3n) sinb
+coqwa — y) sing sin(a — ¢ + 3n) sinb
+ cosp cosh cosbsin(a + ¢+ y +a — 3n)

Res = —/3sin D cosa — ¢ + 3n) sinb

R71 = — cos 2x cos 28 siné cosb sin(a + ¢ — 2y — 3n)
—cos 2 sin 28 sin X sin(a — ¢ + 3n) sinb
+ sin 2u sinf cosb coga + ¢ — 2y — 3n)

R72 = sin2x cos 8 sind cosb sin(a + ¢ — 2y — 3n)
+ sin 2x sin 28 sin 2 sin(a — ¢ + 3n) sinb
+ c0s 2 sind cosb coSa + ¢ — 2y — 3n)

R73 = —sin28 sinf cosb sin(a + ¢ — 2y — 3n) + cos B sin D sinb sin(a — ¢ + 3n)

R74 = coqa + y) cosp cos D sin(a — ¢ + 3n) sinb
+ sin(a + y) cosp coSa — ¢ + 3n) sinb
—singcosd cosbsina+c+y —a — 3n)

R75 = —sin(a + y) cosB cos D sin(a — ¢ + 3n) sinb
+ coqa + y) cosB coSa — ¢ + 3n) Sinb
+singcosdcoshcoda+c+y —a—3n)

R76 = — coqa — y) sing cos D sin(a — ¢ + 3n) sinb
+sin(a — y) sing coga — ¢ + 3n) sinb
—cosp cost cosbsina +c+y +a —3n)



9268 M Byrd and E C GSudarshan

R77 = —sin(a — y) sinB cos @ sin(a — ¢ + 3n) sinb
—coqa — y)singcoda — ¢ + 3n) sinb
+ cosp cosd coshcoda +c+y +a — 3n)

R7s = v/3sin @ sin(a — ¢ + 3n) sinb

Rgy = 3+/3cos 2 sin 28 sinf 6
Rgp = —1+/3sin 2 sin 28 sir 0
Rgs = —3+/3cos Bsi o

Rgs = —3+/3coga + y) cospsin ¥
Rgs = 34/3sin(a + y) cosp sin ¥
Rgs = 2+/3coga — y)sinsiny
Rg7 = 3+/3sin(@ — y)sinBsin®
Rgg=1— 3sirfo.

Recall thaty = ¢//3.
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