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Center for Particle Physics, University of Texas at Austin, Austin, TX 78712-1081, USA

Received 1 July 1998

Abstract. The ‘D’ matrices for all states of the two fundamental representations and octet
are given in the Euler angle parametrization ofSU(3). The raising and lowering operators are
given in terms of linear combinations of the left-invariant vector fields of the group manifold in
this parametrization. Using these differential operators the highest weight state of an arbitrary
irreducible representation is found and a description of the calculation of Clebsch–Gordon
coefficients is given.

1. Introduction

In our understanding of particle physics, studying the groupSU(3) has helped tremendously.
It has given us an organization to the plethora of ‘elementary’ particles through the Eightfold
way [1] and then led to the quark description of hadrons§. This, in turn, led to the
fundamental theory of the strong nuclear interactions known as the colourSU(3) of the now
widely accepted standard model‖. It has also had numerous successes in phenomenological
models such as the nuclearSU(3) model of Elliot [4], and the Skyrme–Witten model [5].
Its algebra has been utilized extensively for these applications but its manifold has not. In
most cases, due to the intimate relationship between the algebra of a Lie group and the
group itself (subalgebras correspond to subgroups, etc), this description has been enough.
Also, since the group manifold ofSU(3) is eight dimensional, it is not prone to ‘visual’
analysis. Recently, however, the manifold has been used for the study of quantum three-
level systems and geometric phases [6–9]. The subgroups and coset spaces ofSU(3) are
listed in [8] along with a discussion of the geometry of the group manifold which is relevant
to the understanding of the geometric phase. It should therefore be no surprise if the group
and group manifold lead to further understanding of physical phenomena beyond what the
algebra has already accomplished. Further study of its structure may very well lead to an
even greater understanding of nature and the way its symmetries are manifest.

Here, the raising and lowering operators of the group are given in terms of differential
operators. The states of the fundamental representations are given in terms of the Euler angle
parametrization. A highest weight state is given for all irreps (irreducible representations)
that will enable the calculation of any state within any irrep. A determination of the ranges
of the angles in the Euler angle parametrization is made. Finally, the states within the
octet are given and a description of the direct calculation of the Wigner Clebsch–Gordon
coefficients is given that uses the invariant volume element.

† E-mail address: mbyrd@physics.utexas.edu
‡ E-mail address: sudarshan@physics.utexas.edu
§ A bibliography on the developement of the quark model is given in [2].
‖ An excellent review of this material is contained in [3].
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2. The ladder operations

The so-called ladder, or raising and lowering operators, take one state to another within an
irrep. Their representation may be in terms of matrices or differential operators. The
differential operators have been constructed here from linear combinations of the left-
invariant vector fields in [9]. This enables one to analyse the states within a group
representation. Most of this analysis has been performed using only the properties of
the commutation relations which the differential operators can be shown to satisfy. These
analyses will not be repeated here since they are well explained in various texts (see, for
example, [10, 11]). What is important here is that the differential operators given can
be shown to satisfy the commutation relations on theD matrices of the next section and
therefore represent the Lie algebra as claimed.

First the left differential operators, that is, those that are constructed from the left-
invariant vector fields of [9] are given. These change the labels on the left of the brackets
used to represent the elements of theD matrices which indicates the change from one
state within an irrep to another. The explicit forms of these are given appendix A. These
operations are given explicitly by example below. One may take note that the right ‘raising’
operations are given by the subtraction of two elements of the corresponding3s. This is
due to the commutation relations that are obeyed by the right operators. They satisfy (see,
for instance, [12])

[3r
i ,3

r
j ] = −2iεijk3

r
k

whereas the left operators satisfy

[3i,3j ] = 2iεijk3k.

3. The fundamental representations

Here the states of the fundamental representations are exhibited explicitly and one may
check through a straightforward calculation that they are related through the raising and
lowering operations defined above. First the3 representation.

D(α, β, γ, θ, a, b, c, φ) = e(−iλ3α)e(iλ2β)e(−iλ3γ )e(iλ5θ)e(−iλ3a)e(iλ2b)e(−iλ3c)e(−iλ8φ). (1)

This matrix actually corresponds to the complex conjugate of the matrixD in [9] as is
common. The particular signs of the exponents correspond to a choice of phase that is a
generalization of the Condon and Shortley phase convention (see [13]). This makes the root
operators positive or zero. Matrix elements can be labelled by their eigenvalues as below,
where the following definition is used〈

t ′3, y
′ ∣∣ t3, y〉 ≡ D(1,0)

t3,y;t ′3,y ′

D
(1,0)
t3,y;t ′3,y ′ =


〈

1
2,

1
3

∣∣ 1
2,

1
3

〉 〈
1
2,

1
3

∣∣− 1
2,

1
3

〉 〈
1
2,

1
3

∣∣ 0,− 2
3

〉〈− 1
2,

1
3

∣∣ 1
2,

1
3

〉 〈− 1
2,

1
3

∣∣− 1
2,

1
3

〉 〈− 1
2,

1
3

∣∣ 0,− 2
3

〉〈
0,− 2

3

∣∣ 1
2,

1
3

〉 〈
0,− 2

3

∣∣− 1
2,

1
3

〉 〈
0,− 2

3

∣∣ 0,− 2
3

〉
 . (2)

These matrix elements correspond to the functions:〈
1
2,

1
3

∣∣ 1
2,

1
3

〉 = e−iαe−ice−iη(e−iγe−ia cosβ cosb cosθ − eiγeia sinβ sinb)〈
1
2,

1
3

∣∣− 1
2,

1
3

〉 = e−iαeice−iη(e−iγe−ia cosβ sinb cosθ + eiγeia sinβ cosb)〈
1
2,

1
3

∣∣ 0,− 2
3

〉 = e−iαe−iγe2iη cosβ sinθ
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2,

1
3

∣∣ 1
2,

1
3

〉 = −eiαe−ice−iη(e−iγe−ia sinβ cosb cosθ + eiγeia cosβ sinb)〈− 1
2,

1
3

∣∣− 1
2,

1
3

〉 = −eiαeice−iη(e−iγe−ia sinβ sinb cosθ − eiγeia cosβ cosb)〈− 1
2,

1
3

∣∣ 0,− 2
3

〉 = −eiαe−iγe2iη sinβ sinθ〈
0,− 2

3

∣∣ 1
2,

1
3

〉 = −e−iae−ice−iη sinθ cosb〈
0,− 2

3

∣∣− 1
2,

1
3

〉 = −e−iaeice−iη sinb sinθ〈
0,− 2

3

∣∣ 0,− 2
3

〉 = e2iη cosθ.

This is actually formed fromD∗ and the3∗ representation is formed by the following
replacements:{λ1 → λ1, λ2 → −λ2, λ3 → −λ3, λ4 → λ4, λ5 → −λ5, λ6 → λ6,
λ7 → −λ7, λ8 → −λ8} for the corresponding matrices in the3 representation. The two
fundamental representations are inequivalent so there exists no inner automorphism between
them. This is the outer automorphism that preserves the ladder operations and the previous
phase convention. The3∗ representation is then found to be as follows:

D(α, β, γ, θ, a, b, c, φ) = e(iλ3α)e(−iλ2β)e(iλ3γ )e(−iλ5θ)e(iλ3a)e(−iλ2b)e(iλ3c)e(iλ8φ). (3)

Its matrix elements can be labelled by their eigenvalues as follows:

D
(0,1)
t3,y;t ′3,y ′ =


〈− 1

2,− 1
3

∣∣− 1
2,− 1

3

〉 〈− 1
2,− 1

3

∣∣ 1
2,− 1

3

〉 〈− 1
2,− 1

3

∣∣ 0, 2
3

〉〈
1
2,− 1

3

∣∣− 1
2,− 1

3

〉 〈
1
2,− 1

3

∣∣ 1
2,− 1

3

〉 〈
1
2,− 1

3

∣∣ 0, 2
3

〉〈
0, 2

3

∣∣− 1
2,− 1

3

〉 〈
0, 2

3

∣∣ 1
2,− 1

3

〉 〈
0, 2

3

∣∣ 0, 2
3

〉
 (4)

〈− 1
2,− 1

3

∣∣− 1
2,− 1

3

〉 = eiαeiceiη(eiγeia cosβ cosb cosθ − e−iγe−ia sinβ sinb)〈− 1
2,− 1

3

∣∣ 1
2,− 1

3

〉 = −eiαe−iceiη(eiγeia cosβ sinb cosθ + e−iγe−ia sinβ cosb)〈− 1
2,− 1

3

∣∣ 0, 2
3

〉 = −eiαeiγe−2iη cosβ sinθ〈
1
2,− 1

3

∣∣− 1
2,− 1

3

〉 = e−iαeiceiη(eiγeia sinβ cosb cosθ + e−iγe−ia cosβ sinb)〈
1
2,− 1

3

∣∣ 1
2,− 1

3

〉 = −e−iαe−iceiη(eiγeia sinβ sinb cosθ − e−iγe−ia cosβ cosb)〈
1
2,− 1

3

∣∣ 0, 2
3

〉 = −e−iαeiγe−2iη sinβ sinθ〈
0, 2

3

∣∣− 1
2,− 1

3

〉 = eiaeiceiη sinθ cosb〈
0, 2

3

∣∣ 1
2,− 1

3

〉 = −eiae−iceiη sinθ sinb〈
0, 2

3

∣∣ 0, 2
3

〉 = e−2iη cosθ.

Note that theD matrices are labelled properly in the following form (thet label was not
necessary in the fundamental representations nor would it be on any triangular representation,
D(p,0) or D(0,q)):

D
(p,q)

(t,t3,y;t ′,t ′3,y ′).

4. General irreducible representations

In the Euler angle coordinates, the states within an irrep may be obtained in two ways. One
is to exponentiate the algebra and multiply the matrices in the decompostion given in [9],
or (1). Another way is to find the maximum weight state of the irrep and use the raising
and lowering operations to derive the other states within that irrep. This maximum weight
state can be found as follows.
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For each irrep there exists a unique maximum weight state,D
(p,q)
m , that can be defined

by the following equations:

V+D(p,q)
m = 0 V r+D

(p,q)
m = 0

U+D(p,q)
m = 0 Ur

+D
(p,q)
m = 0

T+D(p,q)
m = 0 T r+D

(p,q)
m = 0.

When one solves these equations and satisfies the conditions for the first two or three reps,
one finds that in this parametrization

D(p,q)
m = e−i(2q+p)ηe−ipαe−ipc

p∑
n=0

(−1)n+1

(
p

n

)
×(e−iγe−ia cosβ cosb cosθ)n(eiγeia sinβ sinb)p−n cosq θ. (5)

Note 1. This is not the maximum state defined in [10, 11].

The maximum state could also be labelled witht3m andym, which denote the value of
t3 andy for this maximum state. In terms ofp andq these are

ym = 1
3(2q + p) t3m = 1

2p.

5. The octet

The octet is the smallest nontrivial example within which there exists two different states
with the samet3 andy. These will have different total isospin since they belong to different
isospin representations. Thus it may be used as an example of how to find the Clebsch–
Gordon coefficients using the explicitD matrices.

The octet is an irrep with eight states (hence the name). It can be obtained from the
product ofD(1,0) andD(0,1) from which a scalarD(0,0) is removed. Thus it is denoted by
D(1,1). For it, the maximum weight state is given by the equation in the last section by
substitution of the explicitp andq,

D(1,1)
m = e−iαe−ice−3iη cos(θ)[e−iγe−ia cos(β) cos(b) cos(θ)− eiγeia sin(β) sin(b)].

For calculational purposes it is more convenient to notice that this may be written as

D(1,1)
m = 〈 12, 1

3

∣∣ 1
2,

1
3

〉〈
0, 2

3

∣∣ 0, 1
3

〉
.

From this state, operation byV− will give one of the two different centre states, each having
(t3, y) given by(0, 0). The first is given by

V−D(1,1)
m = 〈− 1

2,
1
3

∣∣ 1
2,

1
3

〉〈
1
2,− 1

3

∣∣ 0, 2
3

〉
and the second by

T−U−D(1,1)
m = 〈− 1

2,
1
3

∣∣ 1
2,

1
3

〉〈
1
2,− 1

3

∣∣ 0, 2
3

〉+ 〈 12, 1
3

∣∣ 1
2,

1
3

〉〈− 1
2,− 1

3

∣∣ 0, 2
3

〉
.

The other states are as follows, listed counterclockwise around the hexagon starting from
the one after the maximum weight state.

U−D(1,1)
m = 〈 12, 1

3

∣∣ 1
2,

1
3

〉〈
1
2,− 1

3

∣∣ 0, 2
3

〉
V−U−D(1,1)

m = 〈0,− 2
3

∣∣ 1
2,

1
3

〉〈
1
2,− 1

3

∣∣ 0, 2
3

〉
T−V−U−D(1,1)

m = 〈0,− 2
3

∣∣ 1
2,

1
3

〉〈− 1
2,− 1

3

∣∣ 0, 2
3

〉
U+T−V−U−D(1,1)

m = 〈− 1
2,

1
3

∣∣ 1
2,

1
3

〉〈− 1
2,− 1

3

∣∣ 0, 2
3

〉
V+U+T−V−U−D(1,1)

m = 〈− 1
2,

1
3

∣∣ 1
2,

1
3

〉〈
0, 2

3

∣∣ 0, 2
3

〉
.
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The two of concern here are the two centre states. From these, the linear combinations
that give states that are members ofSU(2) isospin states will be used. This is easy to do.
Simply take the arbitrary linear combination of the two and demand thatT+ andT− on this
state give zero. This linear combination is then a member of an isospin singlet. The other
linear combination gives the centre state in an isospin triplet. These linear combinations
are found to be

D
(1,1)
(2,0,0;2,0,0) =

〈− 1
2,

1
3

∣∣ 1
2,

1
3

〉〈
1
2,− 1

3

∣∣ 0, 2
3

〉
which is the member of the isospin triplet, and

D
(1,1)
(0,0,0;0,0,0) =

〈− 1
2,

1
3

∣∣ 1
2,

1
3

〉〈
1
2,− 1

3

∣∣ 0, 2
3

〉− 〈 12, 1
3

∣∣ 1
2,

1
3

〉〈− 1
2,− 1

3

∣∣ 0, 2
3

〉
(6)

which is an isospin singlet. Thus the Clebsch–Gordon coefficients have been determined.
This can be used as a general method for calculating them. One can simply demand that the
states form complete horizontal isospin irreps in thet3–y plane. These are notSU(3) WCG
(Wigner–Clebsch–Gordon) coefficients, but rather the coefficients of the linear combinations
of SU(2) irreps withinSU(3). The method of calculating theSU(3) WCG coefficients is
now straightforward and will be discussed next.

6. WCG coefficients forSU (3)

The WCG coefficients may now be calculated with the orthogonality relations between
different states using the following group-invariant volume element. This may be found by
using the (wedge) product of the left- (or right-) invariant 1-forms calculated in [9]. The
result is the following:

dV = sin 2β sin 2b sin 2θ sin2 θ dα dβ dγ dθ da db dc dφ

where the ranges of integration are

06 α, γ, a, c < π

06 β, b, θ 6 1
2π and 06 φ <

√
3π.

These are not trivial to determine [14] since their determination is equivalent to determining
the invariant volume of the group. With theD matrices given for the fundamental
representations, one may infer these minimum values for the ranges of the angles by
enforcing the orthogonality relations that these representation functions must satisfy. These
orthogonality relations are given by∫
D
(p1,q1)∗
t1,(t3)1,y1;t ′1,(t ′3)1,y ′1D

(p2,q2)

t2,(t3)2,y2;t ′2,(t ′3)2,y ′2 dV

= V0

d
δp1,p2δq1,q2δt1,t2δ(t3)1,(t3)2δy1,y2δt ′1,t

′
2
δ(t ′3)1,(t

′
3)2
δy ′1,y

′
2

(7)

whereV0 is the invariant volume of the group andd is the dimension of the representation,
d = 1

2(p + 1)(q + 1)(p + q + 2). Thus knowing that the integral of the product of an
element of aD matrix with its complex conjugate is a constant that depends only on the
dimensionality of the representation, and that the integral of its product with anything else
is zero, provides equations that may be solved to find the ranges of the angles. The result
for V0 (= √3π5/4) agrees with what Marinov found (V0 = 3

√
3π5/4) to within a factor of

3 [14]. This may be explained by considering the structure of the group manifold. In [12]
the group-invariant volume element forSU(2) is derived. The normalization factorπ2 can
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be viewed as arising from the anglesα, andβ in the ordinary Euler angle parametrization
of SU(2);

U = eiαJ3eiβJ2eiγ J3.

The factor of 2 comes from the covering of the northern and southern poles, or hemispheres.
In the case ofSU(3), one may consider the possibility of three ‘poles’. Thus we may
consider the ranges

06 φ/
√

3< π 2π 6 φ/
√

3< 3π and 4π 6 φ/
√

3< 5π

for φ to cover the three poles.
The orthogonality relation for theSU(3) representation matrices, with the constants

determined, gives us a vital tool for the determination of the WCG coefficients ofSU(3).
One may simply take a direct product of any representations and use the orthogonality
relation to determine which, and how many, representations are contained in that direct
product. The linear combinations of the states in a given representation can then be
determined (with the coefficients being WCG coefficients) either by direct ladder operations
that were given earlier, or by ensuring othogonality with the appropriate integration. The
important result is the orthogonality relation with appropriate constants. This eliminates the
problem faced by de Swart by solving his ‘0’ problem [15]; that is, one may now find the
number of irreducible representations in any given representation by using the orthogonality
conditions.

7. SU (3) and SO(8)

The generic element of the adjoint representation, since it is real and unitary, is orthogonal.
Since it also has determinant 1, it is an element ofSO(8). It is, however, a function of
only eight angles. If we call this matrixRij , then it will satisfy the equation

UλiU
† = Rijλj

and

3r
i = Rij3j .

Therefore we have a mapping from the left-invariant vector fields to the right-invariant
vector fields given in [9] and therefore between the left and right differential operators.
This relates the so-called body-fixed and space-fixed reference frames (see, for example,
[12]).

This mapping is exhibited explicitly in appendix B.

8. Summary/conclusions

It has been shown that the operators from [9] provide a means for finding the irreps of
SU(3) by the construction of the ladder operators. The two fundamental reps and the octet
rep have been exhibited explicitly. The highest weight state for any irrep was found, thus
enabling the calculation of any state within any irrep. A determination of the ranges of the
angles in the Euler angle parametrization was made and the calculation of WCG coefficients
was discussed. Therefore a more complete description of the groupSU(3), its manifold
and its explicitly parametrized irreps has been given than has been done in the past.

The Clebsch–Gordon coefficients (or WCG coefficients) were calculated by de Swart in
[15] using only algebraic properties. The operators given here could mimic those results as
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well. The Euler angle parametrization was given by Beg and Ruegg along with a calculation
of the differential operators that are valid for some particular cases and no attempt was made
to find the corresponding right-invariant vector fields [16]. Holland [17] and Nelson [18]
originally gave an account of the irreps ofSU(3), but the rep matrices were presented in a
somewhat less manageable form. These were also investigated by Akyeampong and Rashid
[19]. It is anticipated that this more manageable account will lead to new applications.
It has already proven to be useful in the description of three-state systems. This will be
discussed elsewhere.
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Appendix A. Explicit forms of the invariant vector fields

Below are the explicit forms of the raising, lowering and eigenvalue operators in the Euler
angle parametrization. One may consult [10] or [11] for a review of the commutation
relations and the results of these actions on states in thet3–y plane.

In what follows

∂1 ≡ ∂

∂α
∂2 ≡ ∂

∂β
∂3 ≡ ∂

∂γ
∂4 ≡ ∂

∂θ

∂5 ≡ ∂

∂a
∂6 ≡ ∂

∂b
∂7 ≡ ∂

∂c
∂8 ≡ ∂

∂φ

T+ = 1

2
(31+ i32) = 1

2
e−2iα

(
i cot 2β ∂1− ∂2− i

sin 2β
∂3

)
(A1)

T− = 1

2
(31− i32) = 1

2
e2iα

(
i cot 2β ∂1+ ∂2− i

sin 2β
∂3

)
(A2)

V+ = 1

2
(34+ i35)

= i

2
e−i(α+γ ) sinβ

sin 2β
cotθ ∂1+ 1

2
e−i(α+γ ) sinβ cotθ ∂2− i

2
e−i(α+γ ) cot 2β sinβ cotθ ∂3

+ i

2
e−i(α+γ ) (2− sin2 θ)

sin 2θ
cosβ ∂3− 1

2
e−i(α+γ ) cosβ ∂4− i

2
e−i(α+γ ) 2 cosβ

sin 2θ
∂5

− i

2
e−i(α−γ−2a) cot 2b

sinθ
sinβ ∂5− 1

2
e−i(α−γ−2a) sinβ

sinθ
∂6+ i

2
e−i(α−γ−2a) sinβ

sinθ sin 2b
∂7

− 3

4
e−i(α+γ ) tanθ cosβ Y8 (A3)
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V− = 1

2
(34− i35)

= i

2
ei(α+γ ) sinβ

sin 2β
cotθ ∂1− 1

2
ei(α+γ ) sinβ cotθ ∂2− i

2
ei(α+γ ) cot 2β sinβ cotθ ∂3

+ i

2
ei(α+γ ) (2− sin2 θ)

sin 2θ
cosβ ∂3+ 1

2
ei(α+γ ) cosβ ∂4− i

2
ei(α+γ ) 2 cosβ

sin 2θ
∂5

− i

2
ei(α−γ−2a) cot 2b

sinθ
sinβ ∂5+ 1

2
ei(α−γ−2a) sinβ

sinθ
∂6+ i

2
ei(α−γ−2a) sinβ

sinθ sin 2b
∂7

− 3

4
ei(α+γ ) tanθ cosβ Y8 (A4)

U+ = 1

2
(36+ i37)

= i

2
ei(α−γ ) cosβ

sin 2β
cotθ ∂1+ 1

2
ei(α−γ ) cosβ cotθ ∂2− i

2
ei(α−γ ) cot 2β cosβ cotθ ∂3

− i

2
ei(α−γ ) (2− sin2 θ)

sin 2θ
sinβ ∂3+ 1

2
ei(α−γ ) sinβ ∂4+ i

2
ei(α−γ ) 2 sinβ

sin 2θ
∂5

− i

2
ei(α+γ+2a) cot 2b

sinθ
cosβ ∂5− 1

2
ei(α+γ+2a) cosβ

sinθ
∂6+ i

2
ei(α+γ+2a) cosβ

sinθ sin 2b
∂7

+ 3

4
ei(α−γ ) tanθ sinβ Y8 (A5)

U− = 1

2
(36− i37)

= i

2
e−i(α−γ ) cosβ

sin 2β
cotθ ∂1− 1

2
e−i(α−γ ) cosβ cotθ ∂2

− i

2
e−i(α−γ ) cot 2β cosβ cotθ ∂3− i

2
e−i(α−γ ) (2− sin2 θ)

sin 2θ
sinβ ∂3

− 1

2
e−i(α−γ ) sinβ ∂4

+ i

2
e−i(α−γ ) 2 sinβ

sin 2θ
∂5− i

2
e−i(α+γ+2a) cot 2b

sinθ
cosβ ∂5

+ 1

2
e−i(α+γ+2a) cosβ

sinθ
∂6+ i

2
e−i(α+γ+2a) cosβ

sinθ sin 2b
∂7

+ 3

4
e−i(α−γ ) tanθ sinβ Y8 (A6)

T3 = i

2
∂1 (A7)

Y = i ∂3− i ∂5+ i
1√
3
∂8 (A8)

where I have omitted a ‘left’ designation. The right differential operators have a superscript
r. These are given by the following equations:

T r− =
1

2
(3r

1+ i3r
2) =

1

2
e2ic

(
−i cot 2b ∂7− ∂6+ i

sin 2b
∂5

)
(A9)

T r+ =
1

2
(3r

1− i3r
2) =

1

2
e−2ic

(
−i cot 2b ∂7+ ∂6+ i

sin 2b
∂5

)
(A10)
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V r− =
1

2
(3r

4+ i3r
5)

= − i

2
ei(c+a+3η) sinb

sin 2b
cotθ ∂7+ 1

2
ei(c+a+3η) sinb cotθ ∂6

+ i

2
ei(c+a+3η) cot 2b sinb cotθ ∂5− i

2
ei(c+a+3η) (2− sin2 θ)

sin 2θ
cosb ∂5

− 1

2
ei(c+a+3η) cosb ∂4+ i

2
ei(c+a+3η) 2 cosb

sin 2θ
∂3+ i

2
ei(c−a−2γ+3η) cot 2β

sinθ
sinb ∂3

− 1

2
ei(c−a−2γ+3η) sinb

sinθ
∂2− i

2
ei(c−a−2γ+3η) sinb

sinθ sin 2β
∂1+ 3

4
ei(c+a+3η) tanθ cosb Y r8

(A11)

V r
+ =

1

2
(3r

4− i3r
5)

= − i

2
e−i(c+a+3η) sinb

sin 2b
cotθ ∂7− 1

2
e−i(c+a+3η) sinb cotθ ∂6

+ i

2
e−i(c+a+3η) cot 2b sinb cotθ ∂5− i

2
e−i(c+a+3η) (2− sin2 θ)

sin 2θ
cosb ∂5

+ 1

2
e−i(c+a+3η) cosb ∂4+ i

2
e−i(c+a+3η) 2 cosb

sin 2θ
∂3+ i

2
e−i(c−a−2γ+3η) cot 2β

sinθ
sinb ∂3

+ 1

2
e−i(c−a−2γ+3η) sinb

sinθ
∂2− i

2
e−i(c−a−2γ+3η) sinb

sinθ sin 2β
∂1

+ 3

4
e−i(c+a+3η) tanθ cosb Y r8 (A12)

Ur
− =

1

2
(3r

6+ i3r
7)

= i

2
e−i(c−a−3η) cosb

sin 2b
cotθ ∂7− 1

2
e−i(c−a−3η) cosb cotθ ∂6

− i

2
e−i(c−a−3η) cot 2b cosb cotθ ∂5− i

2
e−i(c−a−3η) (2− sin2 θ)

sin 2θ
sinb ∂5

− 1

2
e−i(c−a−3η) sinb ∂4+ i

2
e−i(c−a−3η) 2 sinb

sin 2θ
∂3− i

2
e−i(c+a+2γ−3η) cot 2β

sinθ
cosb ∂3

+ 1

2
e−i(c+a+2γ−3η) cosb

sinθ
∂2+ i

2
e−i(c+a+2γ−3η) cosb

sinθ sin 2β
∂1

+ 3

4
e−i(c−a−3η) tanθ sinb Y r8 (A13)

Ur
+ =

1

2
(3r

6− i3r
7)

= i

2
ei(c−a−3η) cosb

sin 2b
cotθ ∂7+ 1

2
ei(c−a−3η) cosb cotθ ∂6

− i

2
ei(c−a−3η) cot 2b cosb cotθ ∂5− i

2
ei(c−a−3η) (2− sin2 θ)

sin 2θ
sinb ∂5
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+ 1

2
ei(c−a−3η) sinb ∂4+ i

2
ei(c−a−3η) 2 sinb

sin 2θ
∂3− i

2
ei(c+a+2γ−3η) cot 2β

sinθ
cosb ∂3

− 1

2
ei(c+a+2γ−3η) cosb

sinθ
∂2+ i

2
ei(c+a+2γ−3η) cosb

sinθ sin 2β
∂1+ 3

4
ei(c−a−3η) tanθ sinb Y r8

(A14)

T r3 =
i

2
∂7 (A15)

Y r = 1√
3

i ∂8 (A16)

whereη ≡ φ/√3.

Appendix B. The adjoint representation

R11 = cos 2α cos 2β cosθ [cos(2a + 2γ ) cos 2b cos 2c − sin(2a + 2γ ) sin 2c]

− sin 2α cosθ [sin(2a + 2γ ) cos 2b cos 2c + cos(2a + 2γ ) sin 2c]

− cos 2α sin 2β
(
1− 1

2 sin2 θ
)

sin 2b cos 2c

R12 = sin 2α cos 2β cosθ [cos(2a + 2γ ) cos 2b cos 2c − sin(2a + 2γ ) sin 2c]

+ cos 2α cosθ [sin(2a + 2γ ) cos 2b cos 2c + cos(2a + 2γ ) sin 2c]

− sin 2α sin 2β
(
1− 1

2 sin2 θ
)

sin 2b sin 2c

R13 = sin 2β cos(2a + 2γ ) cos 2b cos 2c cosθ − sin 2β sin(2a + 2γ ) sin 2c cosθ

+ cos 2β
(
1− 1

2 sin2 θ
)

sin 2b cos 2c

R14 = − 1
2 cos(α + γ ) cosβ sin 2θ sin 2b cos 2c − cos(α − γ − 2a) sinβ cos 2b cos 2c sinθ

+ sin(α + γ + 2a) sinβ sin 2c sinθ

R15 = 1
2 sin(α + γ ) cosβ sin 2θ sin 2b cos 2c + sin(α − γ − 2a) sinβ cos 2b cos 2c sinθ

+ cos(α + γ + 2a) sinβ sin 2c sinθ

R16 = 1
2 cos(α − γ ) sinβ sin 2θ sin 2b cos 2c − cos(α − γ − 2a) cosβ cos 2b cos 2c sinθ

+ sin(α + γ + 2a) cosβ sin 2c sinθ

R17 = 1
2 sin(α − γ ) sinβ sin 2θ sin 2b cos 2c − sin(α − γ − 2a) cosβ cos 2b cos 2c sinθ

− cos(α + γ + 2a) cosβ sin 2c sinθ

R18 = −
√

3

2
sin2 θ sin 2b cos 2c

R21 = cos 2α cos 2β cosθ [sin(2a + 2γ ) cos 2c + cos(2a + 2γ ) cos 2b sin 2c]

− sin 2α cosθ [sin(2a + 2γ ) cos 2b sin 2c − cos(2a + 2γ ) cos 2c]

− cos 2α sin 2β
(
1− 1

2 sin2 θ
)

sin 2b sin 2c

R22 = − sin 2α cos 2β cosθ [sin(2a + 2γ ) cos 2c + cos(2a + 2γ ) cos 2b sin 2c]

− cos 2α cosθ [sin(2a + 2γ ) cos 2b sin 2c − cos(2a + 2γ ) cos 2c]

+ sin 2α sin 2β
(
1− 1

2 sin2 θ
)

sin 2b sin 2c
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R23 = sin 2β cosθ [cos(2a + 2γ ) cos 2b sin 2c + sin(2a + 2γ ) cos 2c]

+ cos 2β
(
1− 1

2 sin2 θ
)

sin 2b sin 2c

R24 = − 1
2 cos(α + γ ) cosβ sin 2θ sin 2b sin 2c + sin(α − γ − 2a) sinβ sinθ cos 2c

− cos(α − γ − 2a) sinβ sinθ cos 2b sin 2c

R25 = 1
2 sin(α + γ ) cosβ sin 2θ sin 2b sin 2c + cos(α − γ − 2a) sinβ sinθ cos 2c

+ sin(α − γ − 2a) sinβ sinθ cos 2b sin 2c

R26 = 1
2 cos(α − γ ) sinβ sin 2θ sin 2b sin 2c − sin(α + γ + 2a) cosβ sinθ cos 2c

− cos(α + γ + 2a) cosβ sinθ cos 2b sin 2c

R27 = 1
2 sin(α − γ ) sinβ sin 2θ sin 2b sin 2c + cos(α + γ + 2a) cosβ sinθ cos 2c

− sin(α + γ + 2a) cosβ sinθ cos 2b sin 2c

R28 = − 1
2

√
3 sin2 θ sin 2b sin 2c

R31 = − cos 2α cos 2β cosθ sin 2b cos(2a + 2γ )+ sin 2α cosθ sin 2b sin(2a + 2γ )

− cos 2α sin 2β
(
1− 1

2 sin2 θ
)

cos 2b

R32 = sin 2α cos 2β cosθ sin 2b cos(2a + 2γ )+ cos 2α cosθ sin 2b sin(2a + 2γ )

+ sin 2α sin 2β
(
1− 1

2 sin2 θ
)

cos 2b

R33 = − sin 2β cosθ sin 2b cos(2a + 2γ )+ cos 2β
(
1− 1

2 sin2 θ
)

cos 2b

R34 = − 1
2 cos(α + γ ) cosβ sin 2θ cos 2b + cos(α − γ − 2a) sinβ sinθ sin 2b

R35 = 1
2 sin(α + γ ) cosβ sin 2θ cos 2b − sin(α − γ − 2a) sinβ sinθ sin 2b

R36 = 1
2 cos(α − γ ) sinβ sin 2θ cos 2b + cos(α + γ + 2a) cosβ sinθ sin 2b

R37 = 1
2 sin(α − γ ) sinβ sin 2θ cos 2b + sin(α + γ + 2a) cosβ sinθ sin 2b

R38 = − 1
2

√
3 sin2 θ cos 2b

R41 = − cos 2α cos 2β sinθ sinb cos(a − c − 2γ − 3η)

− cos 2α sin 2β sin 2θ cos(a + c + 3η) cosb

+ sin 2α sinθ sinb sin(a − c − 2γ − 3η)

R42 = sin 2α cos 2β sinθ sinb cos(a − c − 2γ − 3η)

+ sin 2α sin 2β sin 2θ cos(a + c + 3η) cosb

− cos 2α sinθ sinb sin(a − c − 2γ − 3η)

R43 = sin 2β sinθ sinb cos(a − c − 2γ − 3η)+ cos 2β sin 2θ cos(a + c + 3η) cosb

R44 = cos(α + γ ) cosβ cos 2θ cos(a + c + 3η) cosb

− sin(α + γ ) cosβ sin(a + c + 3η) cosb

− sinβ sinθ sinb cos(a + γ − α − c − 3η)
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R45 = − sin(α + γ ) cosβ cos 2θ cos(a + c + 3η) cosb

− cos(α + γ ) cosβ sin(a + c + 3η) cosb

− sinβ sinθ sinb sin(a + γ − α − c − 3η)

R46 = − cos(α − γ ) sinβ cos 2θ cos(a + c + 3η) cosb

− sin(α − γ ) sinβ sin(a + c + 3η) cosb

− cosβ cosθ sinb cos(a + γ + α − c − 3η)

R47 = − sin(α − γ ) sinβ cos 2θ cos(a + c + 3η) cosb

+ cos(α − γ ) sinβ sin(a + c + 3η) cosb

− cosβ cosθ sinb sin(a + γ + α − c − 3η)

R48 =
√

3 sin 2θ cos(a + c + 3η) cosb

R51 = cos 2α cos 2β sinθ sinb sin(a − c − 2γ − 3η)

− cos 2α sin 2β sin 2θ sin(a + c + 3η) cosb

− sin 2α sinθ sinb cos(a − c − 2γ − 3η)

R52 = − sin 2α cos 2β sinθ sinb sin(a − c − 2γ − 3η)

+ sin 2α sin 2β sin 2θ sin(a + c + 3η) cosb

− cos 2α sinθ sinb cos(a − c − 2γ − 3η)

R53 = sin 2β sinθ sinb sin(a − c − 2γ − 3η)+ cos 2β sin 2θ cosb sin(a + c + 3η)

R54 = cos(α + γ ) cosβ cos 2θ sin(a + c + 3η) cosb

+ sin(α + γ ) cosβ cos(a + c + 3η) cosb

+ sinβ cosθ sinb sin(a + γ − α − c − 3η)

R55 = − sin(α + γ ) cosβ cos 2θ sin(a + c + 3η) cosb

+ cos(α + γ ) cosβ cos(a + c + 3η) cosb

− sinβ cosθ sinb cos(a + γ − α − c − 3η)

R56 = − cos(α − γ ) sinβ cos 2θ sin(a + c + 3η) cosb

+ sin(α − γ ) sinβ cos(a + c + 3η) cosb

+ cosβ cosθ sinb sin(a + γ + α − c − 3η)

R57 = − sin(α − γ ) sinβ cos 2θ sin(a + c + 3η) cosb

− cos(α − γ ) sinβ cos(a + c + 3η) cosb

− cosβ cosθ sinb cos(a + γ + α − c − 3η)

R58 =
√

3 sin 2θ sin(a + c + 3η) cosb

R61 = cos 2α cos 2β sinθ cosb cos(a + c − 2γ − 3η)

− cos 2α sin 2β sin 2θ cos(a − c + 3η) sinb

+ sin 2α sinθ cosb sin(a + c − 2γ − 3η)
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R62 = − sin 2α cos 2β sinθ cosb sin(a + c − 2γ − 3η)

+ sin 2α sin 2β sin 2θ cos(a − c + 3η) sinb

+ cos 2α sinθ cosb sin(a + c − 2γ − 3η)

R63 = − sin 2β sinθ cosb cos(a + c − 2γ − 3η)− cos 2β sin 2θ sinb cos(a − c + 3η)

R64 = cos(α + γ ) cosβ cos 2θ cos(a − c + 3η) sinb

− sin(α + γ ) cosβ sin(a − c + 3η) sinb

+ sinβ cosθ cosb cos(a + c + γ − α − 3η)

R65 = − sin(α + γ ) cosβ cos 2θ cos(a − c + 3η) sinb

− cos(α + γ ) cosβ sin(a − c + 3η) sinb

+ sinβ cosθ cosb sin(a + c + γ − α − 3η)

R66 = − cos(α − γ ) sinβ cos 2θ cos(a − c + 3η) sinb

− sin(α − γ ) sinβ sin(a − c + 3η) sinb

+ cosβ cosθ cosb cos(a + c + γ + α − 3η)

R67 = − sin(α − γ ) sinβ cos 2θ cos(a − c + 3η) sinb

+ cos(α − γ ) sinβ sin(a − c + 3η) sinb

+ cosβ cosθ cosb sin(a + c + γ + α − 3η)

R68 = −
√

3 sin 2θ cos(a − c + 3η) sinb

R71 = − cos 2α cos 2β sinθ cosb sin(a + c − 2γ − 3η)

− cos 2α sin 2β sin 2θ sin(a − c + 3η) sinb

+ sin 2α sinθ cosb cos(a + c − 2γ − 3η)

R72 = sin 2α cos 2β sinθ cosb sin(a + c − 2γ − 3η)

+ sin 2α sin 2β sin 2θ sin(a − c + 3η) sinb

+ cos 2α sinθ cosb cos(a + c − 2γ − 3η)

R73 = − sin 2β sinθ cosb sin(a + c − 2γ − 3η)+ cos 2β sin 2θ sinb sin(a − c + 3η)

R74 = cos(α + γ ) cosβ cos 2θ sin(a − c + 3η) sinb

+ sin(α + γ ) cosβ cos(a − c + 3η) sinb

− sinβ cosθ cosb sin(a + c + γ − α − 3η)

R75 = − sin(α + γ ) cosβ cos 2θ sin(a − c + 3η) sinb

+ cos(α + γ ) cosβ cos(a − c + 3η) sinb

+ sinβ cosθ cosb cos(a + c + γ − α − 3η)

R76 = − cos(α − γ ) sinβ cos 2θ sin(a − c + 3η) sinb

+ sin(α − γ ) sinβ cos(a − c + 3η) sinb

− cosβ cosθ cosb sin(a + c + γ + α − 3η)
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R77 = − sin(α − γ ) sinβ cos 2θ sin(a − c + 3η) sinb

− cos(α − γ ) sinβ cos(a − c + 3η) sinb

+ cosβ cosθ cosb cos(a + c + γ + α − 3η)

R78 =
√

3 sin 2θ sin(a − c + 3η) sinb

R81 = 1
2

√
3 cos 2α sin 2β sin2 θ

R82 = − 1
2

√
3 sin 2α sin 2β sin2 θ

R83 = − 1
2

√
3 cos 2β sin2 θ

R84 = − 1
2

√
3 cos(α + γ ) cosβ sin 2θ

R85 = 1
2

√
3 sin(α + γ ) cosβ sin 2θ

R86 = 1
2

√
3 cos(α − γ ) sinβ sin 2θ

R87 = 1
2

√
3 sin(α − γ ) sinβ sin 2θ

R88 = 1− 3
2 sin2 θ.

Recall thatη ≡ φ/√3.
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